bmfs.net
当前位置:首页 >> ArimA >>

ArimA

ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归,p为自回归项,可以看自相关图来估计;MA为移动平均,q为移动平均项数,可以看偏相关图来估计,d为时间序列成为平稳时所做的差分次数。 近期在用R,里面有个函数auto.arima()可以自动生成...

d(d(y)) c ar(4) ar(5) ma(3) ma(4)

用forecast包中的auto.arima自动拟合Arima模型会显示一串结果,最后一个结果就是 Best model: ARIMA(0,0,0)(0,1,0)[12] with drift,说明该结果是最好的拟合结果。结果说明一个AR(0),MA(0)和季节差分一次的Arima模型。

举一个例子吧,比如月度的数据,就是周期为12,它有季节影响。 先对其1阶12步差分,通过看acf pac f看是简单加法模型,还是乘法季节模型 如果是乘法模型那就要对季节部分模拟arima模型 季节部分的arima是以周期位置的acf pacf 确定其模型参数 ar...

这是我之前的回答 http://zhidao.baidu.com/question/203110770 举一个例子吧,比如月度的数据,就是周期为12,它有季节影响。 先对其1阶12步差分,通过看acf pac f看是简单加法模型,还是乘法季节模型 如果是乘法模型那就要对季节部分模拟arima...

ARIMA(p,d,q)模型是ARMA(p,q)模型的扩展 ARMA谱估计 线性系统可以用线性差分方程进行描述,这种差分模型就是自回归----滑动平均模型(AutoRegression----Moving Average,ARMA )。:任何一个有理式的功率谱密度都可以用一个ARMA随机过程

用差分预测差分,结果是差分。要反推的话,就得知道基期数据,然后根据基期数据和增量数据就可以求得预测的数据了。 差分可以消除不稳定性,但是同时也损失了信息,这是不可避免的。

Arima模型在SPSS中的操作 ARIMA,就是autoregressive integrated moving-average model,中文应该叫做自动回归积分滑动平均模型,它主要使用与有长期趋势与季节性波动的时间序列的分析预测中。 ARIMA有6个参数,ARIMA (p,d,q)(sp,sd,sq),后三个...

用forecast包中的auto.arima自动拟合Arima模型会显示一串结果,最后一个结果就是 Best model: ARIMA(0,0,0)(0,1,0)[12] with drift,说明该结果是最好的拟合结果。结果说明一个AR(0),MA(0)和季节差分一次的Arima模型。

一般自相关图若为q阶截尾则滑动系数为q.若偏自相关图为p阶截尾则自回归系数为p.当然这样判断存在一定主观性,还需结合AIC BIC值来判断

网站首页 | 网站地图
All rights reserved Powered by www.bmfs.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com